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Abstract—In this work, we analyze the convergence properties
of a parallel Newton scheme for differential systems. The scheme
concurrently solves the time-coupled nonlinear systems arising
from the application of implicit discretization schemes. We have
found that the scheme acts as a tracking algorithm that converges
to the manifold given by the solution of the nonlinear system at the
current time step parameterized in the "moving" iterating solution
at the previous step. This property explains why the method
can significantly reduce the number of iterations compared to
sequential Newton methods. We have also found, however, that
the method exhibits a theoretical lower bound on the number
of iterations equal to the number of discretization points. A
numerical study using a detailed dynamic power grid model is
provided to demonstrate the developments.

Index Terms—Parallel Processing, Dynamic Simulation, Power
Systems, Newton’s Method, Convergence

I. INTRODUCTION

THE U.S. power grid is expected to sustain highly volatile
environments as a result of large adoptions of intermittent

renewable power and price-responsive demands. The under-
standing of transient phenomena arising under these environ-
ments has been hindered by the computational complexity of
the associated dynamic models. For instance, in the 2003 black-
out report produced by the U.S. Department of Energy, it was
highlighted that limited computational resources prevented a
more detailed analysis of the dynamic phenomena that triggered
cascading events. This indicates that, while high-performance
computing systems have evolved significantly during recent
years, they have not been fully exploited to address existing
needs in power grid simulation. Motivated by these limitations,
we analyze the convergence properties of a parallel method for
large-scale dynamic simulation.

Parallel methods for dynamic power grid simulations date
back to the 1970’s [1] and can be broadly classified as (i)
parallel in time, (ii) parallel in space, and (iii) combinations
of both. An extensive review can be found in [2].

The majority of the proposed methods can be classified as
parallel in space strategies where weak coupling between buses
is exploited to partition the network [3]–[5]. Alteratively, the
approaches in [6]–[9] decouple the network equations from the
differential equations.

Parallel in time simulation strategies have been reported
in [10]–[13]. Similar to space partitioning, these relaxation
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(e.g., Gauss-Jacobi) methods allow the time horizon to be
partitioned and solved concurrently by dropping the coupling
terms in the Newton system between neighboring times steps.
This type of methods are also referred to as parallel block
Newton or multi-splitting methods [14]. Empirically, it has been
observed that parallel in time Newton methods can significantly
reduce the number of iterations compared to sequential Newton
methods. In addition, parallel method allow to overcome mem-
ory bottlenecks associated to full-space Newton methods. An
existing limitation, however, is that the convergence properties
of parallel block Newton methods cannot be easily analyzed
using traditional techniques.

This work provides alternative insights on the convergence
properties of a parallel in time block Newton method and on
efficiency gains over the sequential method. We have found
that the parallel Newton scheme acts as a manifold tracking
algorithm that converges rapidly to a manifold given by the
solution of the nonlinear system of current time step parameter-
ized by the iterating solution at the previous step. This property
explains why the method can significantly reduce the number
of iterations compared to sequential methods.

The paper is structured as follows. Sections II and III
describe the dynamic simulation setting. Section IV provides
convergence results for the parallel Newton method. A dif-
ferential algebraic model for power systems is presented in
Section V. This model is used to demonstrate the performance
of parallel method in Section VI. Section VII concludes this
paper and provides directions for future work.

II. SETTING

We consider the differential-algebraic (DAE) system,

ż(t) = f(z(t), y(t)), z(0) = z0 (2a)
0 = g(z(t), y(t)), t ∈ [0, T ] (2b)

where z(·) ∈ Rnz are the differential states with initial
conditions z0, y(·) ∈ Rny are the algebraic states, t is the
scalar time dimension, and T is the final time. The mappings
f : Rnz × Rny → Rnz and g : Rnz × Rny → Rny are
assumed to be at least twice continuously differentiable. The
DAE system is assumed to be index one.

We seek to solve the above system using an implicit dis-
cretization approach such as implicit Euler, Gauss, and Radau
collocation [15]. In the case of implicit Euler, for instance, we
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Φ′(x) =


∇x1Φ(x1, x0)
∇x1Φ(x2, x1) ∇x2Φ(x2, x1)

. . .
∇xN−1

Φ(xN−1, xN−2)
∇xN−1

Φ(xN , xN−1) ∇xN
Φ(xN , xN−1)

 (1)

obtain a set of nonlinear equations of the following form:

Φz(zk+1, yk+1, zk) = zk+1 − zk − hk · f(zk+1, yk+1)

= 0, (3a)
Φy(zk+1, yk+1, zk) = g(zk+1, yk+1)

= 0, (3b)

for k = 0, . . . , N − 1. Here, N is the number of discretization
steps of length hk and we have

∑N−1
k=0 hk = T . If we group

the differential and algebraic states into a single vector xk ∈
Rnz+ny , k = 0, ..., N we can write the above system in the
following general form:

Φ(xk+1, xk) = 0, k = 0, ..., N − 1 (4)

We will refer to the above system as the full space system.
Its solution is be denoted as x∗

k, k = 0, ..., N . The Jacobian
of the mapping Φ : Rnx × Rnx × R → Rnx with respect
to the first argument (xk+1) is denoted as Φ′ := ∇xk+1

Φ :
Rnx ×Rnx ×R → Rnx×nx . If an implicit Euler discretization
scheme is used, the Jacobian terms of the full-space system
have the following structure,

Φ′
z(zk+1, yk+1, zk)

= Inz − hk(∇zf(zk+1, yk+1) +∇yf(zk+1, yk+1)) (5a)
Φ′

y(zk+1, yk+1, zk)

= ∇zg(zk+1, yk+1) +∇yg(zk+1, yk+1) (5b)

for k = 0, . . . , N − 1.

III. PARALLEL NEWTON METHOD

To solve the full-space system (4), we make use of a parallel
in time Newton scheme. The iteration j takes the form:

Φ′(xj
k+1, x

j
k)∆xj

k+1 = −Φ(xj
k+1, x

j
k), k = 0, ..., N − 1 (6)

where,

xj+1
k+1 = xj

k+1 +∆xj
k+1, k = 0, ..., N − 1. (7)

Here, x0 is the fixed initial condition. The stopping criterion is
the convergence of the global error,∥∥∥∥∥∥∥

 Φ(xj
1, x

j
0)

...
Φ(xj

N , xj
N−1)


∥∥∥∥∥∥∥
∞

≤ ϵ. (8)

We note that the Newton step for all time steps k = 0, ..., N−1
can be computed in parallel. This method is also often called
block-Newton or multi-splitting method [14], [16], [17]. The
method can be interpreted as a Newton scheme applied to the

full-space system (4) that drops the time coupling terms from
the Jacobian matrix. To see this, we define the full-space vector
xT = [xT

1 , ..., x
T
N ]T and system,

Φ(x) =


Φ(x1, x0)
Φ(x2, x1)

...
Φ(xN , xN−1)

 . (9)

The Jacobian for the full-space system is given in equa-
tion (1). The full-space Newton iteration is xj+1 =
xj + Φ′(xj)

−1
Φ(xj). By dropping the off-diagonal terms

from the Jacobian and by noticing that Φ′(xk+1, xk) =
∇xk+1

Φ(xk+1, xk) we recover the parallel Newton scheme (6).
The advantage of the full-space Newton method it that it gives
a fast convergence rate. A key limitation, however, are the
increasing computational times and memory requirements as
the number of discretization points is extended.

We also highlight the difference of the parallel Newton
scheme with that of the sequential Newton scheme that marches
forward in time. This scheme solves the system Φ(x1, x0, h0)
starting at k = 0 to obtain x∗

1 and then solves Φ(x2, x
∗
1, h1) to

obtain x∗
2 and so on. In other words, the system iterations on,

Φ′(xj
k+1, x

∗
k)∆xj

k+1 = −Φ(xj
k+1, x

∗
k), k = 0, ..., N − 1 (10)

The stopping criterion of this method is based on the conver-
gence of the local errors,∥∥ Φ(xj

k+1, x
∗
k)

∥∥
∞ ≤ ϵ, k = 0, ..., N − 1. (11)

One of the advantages of this approach is that it is not as mem-
ory demanding as a full-space Newton scheme. A limitation of
the sequential scheme, however, is that it wastes computational
time by tightening the error of the local nonlinear system at
time step k when this might not be necessary for the next
system k+1. In other words, the scheme lacks of a global view.
This is particularly inefficient in simulation-based optimization
where low-precision simulations are often needed. The parallel
Newton scheme iterates simultaneously over the entire set
of nonlinear equations and monitors the global error (8) as
in the full-space Newton method. Consequently, significant
amounts of computational time can be saved. In addition, the
scheme can be run in a distributed memory system and thus
can accommodate long time horizons and fine discretization
resolutions.

IV. CONVERGENCE ANALYSIS

A key observation that we make in this paper is that
the parallel Newton scheme can be interpreted as a Newton
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scheme under parametric perturbations. As we will see, this
interpretation is key in assessing the convergence properties and
computational limitations of the scheme.

To start the discussion we consider the local system at time
step k + 1,

Φ(xk+1, xk) = 0. (12)

The Newton scheme tries to find x∗
k+1 by linearizing the above

system around the current iterate xj
k+1 and treats xk as an

exogenous parameter with current value xj
k. The Newton system

is,

Φ(xj
k+1, x

j
k) + Φ′(xj

k+1, x
j
k)(x

j+1
k+1 − xj

k+1) = 0. (13)

Here, xj
k is the exogenous parameter sequence over the iteration

sequence j = 0, ..., Jk converging to a limit point x∗
k. For k = 0

we have xj
0 = x0 which are the initial conditions.

Consider the following perturbed system,

Φ(xk+1, x
∗
k) = r. (14)

where r is a residual or perturbation. The solution of this
system is denoted as xk+1(r) an satisfies x∗

k+1 = x∗
k+1(x

∗
k) =

xk+1(0).
Definition 1: (Strong Regularity.) The system (14) is said

to be strongly regular at x∗
k+1 [18] if there exists L > 0 such

that,

∥xk+1(r)− x∗
k+1∥ ≤ L∥r∥. (15)

In [18], it is shown that a condition for the system (14) to
be strongly regular is that the derivative matrix Φ′(x∗

k+1, x
∗
k)

is non-singular.
The Newton system (13) at iteration j can be posed in the

form of (14) by adding and substracting Φ(xj+1
k+1, x

∗
k),

Φ(xj+1
k+1, x

∗
k) = Φ(xj+1

k+1, x
∗
k)− Φ(xj

k+1, x
j
k)

− Φ′(xj
k+1, x

j
k)(x

j+1
k+1 − xj

k+1). (16)

Under strong regularity we have that,

∥xj+1
k+1 − x∗

k+1∥ ≤ L∥rjk+1∥, (17)

where,

rjk+1 = Φ(xj+1
k+1, x

∗
k)− Φ(xj

k+1, x
j
k)

− Φ′(xj
k+1, x

j
k)(x

j+1
k+1 − xj

k+1). (18)

Theorem 1: (Convergence of Perturbed Newton System.)
Assume that the system (14) is strongly regular at x∗

k+1, x
∗
k.

Assume also that the exogenous sequence xj
k converges to

the limit point x∗
k. If there exists σ ≥ 0 such that ∥xj

k −
x∗
k∥ ≤ σ∥xj+1

k+1 − xj
k+1∥ then the Newton scheme converges

superlinearly to x∗
k+1. If ∥xj

k−x∗
k∥ ≤ σ∥xj+1

k+1−xj
k+1∥2 and the

mapping Φ′ is Lipschitz in both arguments then, convergence
is quadratic.

Proof: We first note that the residual of the Newton system can
be expanded as,

rjk+1

= Φ(xj+1
k+1, x

∗
k)− Φ(xj

k+1, x
j
k)− Φ′(xj

k+1, x
j
k)(x

j+1
k+1 − xj

k+1)

= Φ(xj+1
k+1, x

∗
k)− Φ(xj

k+1, x
∗
k)− Φ′(xj

k+1, x
∗
k)(x

j+1
k+1 − xj

k+1)

+ Φ(xj+1
k+1, x

j
k)− Φ(xj

k+1, x
j
k)− Φ′(xj

k+1, x
j
k)(x

j+1
k+1 − xj

k+1)

− Φ(xj+1
k+1, x

j
k) + Φ(xj

k+1, x
∗
k) + Φ′(xj

k+1, x
∗
k)(x

j+1
k+1 − xj

k+1)

+ Φ(xj+1
k+1, x

∗
k)− Φ(xj+1

k+1, x
∗
k). (19)

Define the exogenous perturbation term,

wj
k+1 =

Φ(xj+1
k+1, x

j
k)− Φ(xj

k+1, x
j
k)− Φ′(xj

k+1, x
j
k)(x

j+1
k+1 − xj

k+1)

+ Φ(xj
k+1, x

∗
k)− Φ(xj+1

k+1, x
∗
k) + Φ′(xj

k+1, x
∗
k)(x

j+1
k+1 − xj

k+1)

+ Φ(xj+1
k+1, x

∗
k)− Φ(xj+1

k+1, x
j
k). (20)

so that,

rjk+1 = Φ(xj+1
k+1, x

∗
k)− Φ(xj

k+1, x
∗
k)

− Φ′(xj
k+1, x

∗
k)(x

j+1
k+1 − xj

k+1) + wj
k+1. (21)

Bounding and applying the mean value theorem we have,

∥rjk+1∥
≤ sup

γ∈[0,1]

{Φ′(γxj+1
k+1 + (1− γ)xj

k+1, x
∗
k)− Φ′(xj

k+1, x
∗
k)}·

· ∥∆xj
k+1∥+ ∥wj

k+1∥
= κ1∥∆xj

k+1∥+ ∥wj
k+1∥. (22)

The exogenous term is bounded as,

∥wj
k+1∥

≤ sup
γ∈[0,1]

{Φ′(γxj+1
k+1 + (1− γ)xj

k+1, x
j
k)− Φ′(xj

k+1, x
j
k)}·

· ∥∆xj
k+1∥

+ sup
γ∈[0,1]

{Φ′(xj
k+1, x

∗
k)− Φ′(γxj+1

k+1 + (1− γ)xj
k+1, x

∗
k)}·

· ∥∆xj
k+1∥

+ LΦ∥xj
k − x∗

k∥ (23)

≤ κ2∥∆xj
k+1∥+ κ3∥xj

k − x∗
k∥, (24)

so that,

∥rjk+1∥ ≤ (κ1 + κ2)∥∆xj
k+1∥+ κ3∥xj

k − x∗
k∥. (25)

We first establish superlinear convergence from,

∥xj+1
k+1 − x∗

k+1∥
≤ L∥rjk+1∥
≤ L(κ1 + κ2)∥∆xj

k+1∥+ Lκ3∥xj
k − x∗

k∥
= L(κ1 + κ2)∥xj+1

k+1 − xj
k+1∥+ Lκ3∥xj

k − x∗
k∥

= L(κ1 + κ2)∥xj+1
k+1 − x∗

k+1 + x∗
k+1 − xj

k+1∥
+ Lκ3∥xj

k − x∗
k∥. (26)
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From the assumptions we have,

∥xj
k − x∗

k∥ ≤ σ∥∆xj
k+1∥

≤ σ
(
∥xj+1

k+1 − x∗
k+1∥+ ∥xj

k+1 − x∗
k+1∥

)
, (27)

and

∥xj+1
k+1 − x∗

k+1∥ ≤ L(κ1 + κ2 + σκ3)·

·
(
∥xj+1

k+1 − x∗
k+1∥+ ∥xj

k+1 − x∗
k+1∥

)
. (28)

Finally,

∥xj+1
k+1 − x∗

k+1∥ ≤ α

1− α
∥xj

k+1 − x∗
k+1∥. (29)

Here, α = L(κ1 + κ2 + σκ3). Consequently, the sequence
converges superlinearly.

To establish quadratic convergence we notice that, if the
derivative mapping is Lipschitz continuous, then

∥rjk+1∥ ≤ κ1∥∆xj
k+1∥

2 + ∥wj
k+1∥. (30)

Moreover, we have that,

∥wj
k+1∥ ≤ κ2∥∆xj

k+1∥
2 + κ3∥xj

k − x∗
k∥. (31)

From the assumptions we have that ∥xj
k − x∗

k∥ ≤ σ∥xj+1
k+1 −

xj
k+1∥2. Consequently,

∥xj+1
k+1 − x∗

k+1∥
≤ L(κ1 + κ2)∥xj+1

k+1 − x∗
k+1 + x∗

k+1 − xj
k+1∥

2

+ Lκ3∥xj
k − x∗

k∥2. (32)

Expanding the squared term and dividing through by ∥xj+1
k+1 −

x∗
k+1∥ we obtain,

1

∥xj+1
k+1 − x∗

k+1∥+ 2 · ∥xj
k+1 − x∗

k+1∥+
∥xj

k+1−x∗
k+1∥2

∥xj+1
k+1−x∗

k+1∥

≤ L(κ1 + κ2 + σκ3). (33)

The sequence on the left-hand side is bounded only if there
exists γ > 0 such that,

∥xj
k+1 − x∗

k+1∥2

∥xj+1
k+1 − x∗

k+1∥
≥ γ. (34)

Which implies,

∥xj+1
k+1 − x∗

k+1∥ ≤ γ · ∥xj
k+1 − x∗

k+1∥2. (35)

The proof is complete �.
We note that, once xj

k = x∗
k, then ∥wj

k∥ = 0 and α = Lκ1 so
that the pure Newton convergence rate is recovered. The same
holds for the the sequential Newton scheme. The above result
looks into the local equation system of a time step k and states
that the Newton iteration absorbs the parametric perturbations
induced by the incoming data xj

k and converges to the local
solution x∗

k+1. As can be seen, the convergence rate is dictated
by the error of the previous time step. We now establish the
convergence of the parallel Newton scheme for the full system
of nonlinear equations (4).

Theorem 2: (Convergence of Full System). Assume that
conditions of Theorem 1 hold for k = 0, ..., N − 1. Define
the local errors ϵjk := ∥xj

k − x∗
k∥, k = 0, ..., N with initial

values e0k > 0, k = 0, ..., N . The iterations of the parallel
Newton scheme (6) converge to the solution of the system
(4) x∗

k, k = 0, ..., N . Furthermore, the minimum number of
iterations is N .
Proof: We have the contraction condition,

∥xj+1
k+1 − x∗

k+1∥ ≤ β(∥xj
k+1 − x∗

k+1∥) + ω∥xj
k − x∗

k∥, (36)

for k = 0, ..., N − 1 where ϵj0 = 0 since x0 is fixed. Thus, we
have the iteration sequence:

ϵj+1
1 ≤ βϵj1

ϵj+1
2 ≤ βϵj2 + ωϵj1

= βϵj2 + ωβϵj−1
1

...

ϵj+1
N ≤ βϵjN + ωϵjN−1

= βϵjN + β
N−1∑
i=1

ωiϵj−i
N−i. (37)

We know that ϵj1 → 0. Applying a recursive argument we obtain
ϵjk → 0, k = 0, ..., N so that the scheme converges to x∗

k, k =
0, ..., N . From the above sequence we see that the local error
for k = N and iteration j depends on the delayed error at
k = N − 1 which in turn depends on the delayed error at
k = N−2 and so on. Since the error at each time step k takes at
least one iteration to converge once the error at k−1 converges,
the perturbation term

∑N−1
i=1 ωiϵj−i

N−i requires at least N − 1

iterations to converge. Consequently, the local error ejN takes
at least N iterations to converge and so does the global error.
�

The previous convergence results shed some light into the
convergence properties of the parallel Newton method. They do
not provide much insight, however, on the performance gains
compared to the sequential Newton method. To analyze this
case, we interpret the parallel Newton method as a manifold-
tracking algorithm [19]. In particular, we highlight that the
method can be seen as a warm-starting technique that stays
close to a moving manifold formed by the upcoming data xj

k

from the neighboring time step. In other words, the method
stays close to the manifold given by the solution of the system

Φ(xk+1, x
j
k) = 0, j = 0, ..., Jk (38)

which is denoted as x∗
k+1(x

j
k). We will see that each iteration

of the parallel Newton method xj
k+1 stays close and eventually

converges to the manifold solution. Because of this, once xj
k

converges to x∗
k, a few (usually one) extra Newton iterations

will be needed to converge to x∗
k+1(x

∗
k). This provides the

savings compared to the sequential method which converges
the system Φ(xk+1, x

∗
k) = 0 from the initial guess x0

k+1 once
x∗
k is known. These savings can be significant. For instance, if

the sequential method takes Jseq iterations per time step k and
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the parallel Newton method takes one iteration per step then,
the total iteration savings are (Jseq − 1) · N . As can be seen,
the savings scale with the length of the time horizon.

The following theorem establishes conditions under which
the parallel Newton method converges to the moving manifold
x∗
k+1(x

j
k). To prove this, we compare the distances ∥xj+1

k+1(pj)−
x∗
k+1(pj)∥ and ∥xj

k+1(pj−1) − x∗
k+1(pj−1)∥ where pj := xj

k

and pj−1 := xj−1
k . Accordingly, the Newton system can be

written as,

Φ(xj
k+1(pj−1), pj)

+ Φ′(xj
k+1(pj−1), pj)(x

j+1
k+1 − xj

k+1(pj−1)) = 0 (39)

Theorem 3: (Convergence to Moving Manifold). Assume
that the Jacobian Φ′(xj

k+1(pj−1), pj) is nonsingular. In ad-
dition, assume there exists σ ≥ 0 such that ∥x∗

k+1(pj) −
x∗
k+1(pj−1)∥ ≤ σ∥xj

k+1(pj−1) − x∗
k+1(pj−1)∥. Then the it-

eration sequence xj+1
k+1(pj) given by the Newton iteration (39)

converges to the manifold x∗
k+1(pj) quadratically.

Proof: We have,

0 = Φ(x∗
k+1(pj), pj)

= Φ(x∗
k+1(pj−1), pj)

+

∫ 1

0

Φ′(x∗
k+1(pj−1) + τ(x∗

k+1(pj)− x∗
k+1(pj−1)), pj)·

· (x∗
k+1(pj)− x∗

k+1(pj−1))dτ (40)

and,

Φ(x∗
k+1(pj−1), pj) = Φ(xj

k+1(pj−1), pj)

+

∫ 1

0

Φ′(xj
k+1(pj−1) + τ(x∗

k+1(pj−1)− xj
k+1(pj−1)), pj)·

· (x∗
k+1(pj−1)− xj

k+1(pj−1))dτ. (41)

Combining (41) and (39) we have,

Φ(x∗
k+1(pj−1), pj) = −Φ′(xj

k+1, pj)(x
j+1
k+1 − xj

k+1(pj−1))

+

∫ 1

0

Φ′(xj
k+1(pj−1) + τ(x∗

k+1(pj)− xj
k+1(pj−1)), pj)·

· (x∗
k+1(pj)− xj

k+1(pj−1))dτ. (42)

Combining (40) and (42) we have,

Φ′(xj
k+1(pj−1), pj)(x

j+1
k+1(pj)− xj

k+1(pj−1))

=

∫ 1

0

Φ′(x∗
k+1(pj−1) + τ(x∗

k+1(pj)− x∗
k+1(pj−1)), pj)·

· (x∗
k+1(pj)− x∗

k+1(pj−1))dτ

+

∫ 1

0

Φ′(xj
k+1(pj−1) + τ(x∗

k+1(pj−1)− xj
k+1(pj−1)), pj)·

· (x∗
k+1(pj)− xj

k+1(pj−1))dτ, (43)

Rearranging and bounding terms,

∥Φ′(xj
k+1(pj−1), pj)∥∥xj+1

k+1(pj)− x∗
k+1(pj)∥

≤ 1

2
L∥xj

k+1(pj−1)− x∗
k+1(pj−1)∥2

+ L∥x∗
k+1(pj)− x∗

k+1(pj−1)∥∥xj
k+1(pj−1)− x∗

k+1(pj−1)∥

+
1

2
L∥x∗

k+1(pj)− x∗
k+1(pj−1)∥2. (44)

If ∥x∗
k+1(pj)− x∗

k+1(pj−1)∥ ≤ σ∥xj
k+1(pj−1)− x∗

k+1(pj−1)∥
then,

∥Φ′(xj
k+1(pj−1), pj)∥∥xj+1

k+1(pj)− x∗
k+1(pj)∥

≤ 1

2
(σ + 1)2∥xj

k+1(pj−1)− x∗
k+1(pj−1)∥2. (45)

The proof is complete. �
Corollary 1: Assume conditions of Theorem 1 hold. Then,

there exist iterates Jk such that pJk
= x∗

k for all k = 0, ..., N
and κ ≥ 0 such that,

∥xJk+1
k+1 (xJk

)− x∗
k+1(x

∗
k)∥

≤ κ∥xJk

k+1(x
Jk−1
k )− x∗

k+1(x
Jk−1
k )∥2, (46)

for k = 0, ..., N − 1.
As can be seen, the parallel Newton scheme will converge

rapidly to the solution x∗
k+1(x

∗
k) once it is positioned at the

moving manifold. In Figure 1 we illustrate this behavior.

Fig. 1: Convergence of parallel Newton method to moving
manifold.

V. POWER SYSTEM MODEL

Figure 2 shows the circuit representation of the two-axis
synchronous machine. This model was chosen since it accounts
for transient responses and neglects the effects of subtransients
[20], [21].

Consider a n bus network with m machines attached to it.
The differential equations for each machine i = 1, 2, . . . ,m are
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+

−

[

E′

d + (Xq −X ′

d)Iq + jE′

q

]

ej(δ−
π

2 )

(Id + jIq) e
j(δ−π

2 )

(Vd + jVq) e
j(δ−π

2 )

+

−

Rs
jX ′

d

Fig. 2: Two-Axis Machine Model

given by

T ′
doi

dE′
qi

dt
= −E′

qi − (Xdi −X ′
di)Idi + Efdi (47)

T ′
qoi

dE′
di

dt
= −E′

di + (Xqi −X ′
qi)Iqi (48)

dδi
dt

= ωi − ωs (49)

2Hi

ωs

dωi

dt
= TMi − E′

diIdi − E′
qiIqi

−(X ′
qi −X ′

di)IdiIqi − TFWi, (50)

where Park’s transformation has been used to switch the
coordinate system. The exciter for the machines is an IEEE
type 1 exciter given by

TEi
dEfdi

dt
= −(KEi + SEi(Efdi))Efdi + VRi (51)

TFi
dRfi

dt
= −Rfi +

KFi

TFi
Efdi (52)

TAi
VRi

dt
= −VRi +KAiRFi −

KAiKFi

TFi
Efdi

+KAi(V
ref
i − |Vi|), (53)

with |Vi| =
√

V 2
di + V 2

qi. For the remainder of this paper, it is
assumed that every machine is driven by a steam turbine that
is modeled as

TCHi
dTMi

dt
= −TMi + PSV i (54)

TSV i
dPSV i

dt
= −PSV i + PCi −

1

RDi

(
ωi

ωs
− 1

)
, (55)

where (54) is the behavior of a non-reheat steam turbine model
and (55) is the speed governor for the system.

The power balance for equations of the network at each bus
are given by

0 =
n∑

k=1

[ViVkY
∗
ike

j(θi−θk) − (Pi + jQi)]

−Vie
jθi(Idi − jIqi)e

−j(δi−π/2) (56)

0 =

n∑
k=1

[VjVkY
∗
jke

j(θj−θk) − (Pj + jQj)], (57)

where (56) includes the complex power delivered to the gener-
ation buses i = 1, 2, . . . ,m and (57) represents the load buses
j = m+ 1, . . . , n.

From Fig. 2, the coupling between the dynamic states and
the network equations are[

Rsi −X ′
qi

X ′
di Rsi

] [
Idi
Iqi

]
=

[
E′

di − Vi sin(δi − θi)
E′

qi − Vi cos(δi − θi)

]
, (58)

where the terminal voltage Vie
jθi perceived by the system bus

i is (Vd + jVq)e
j(δi−π

2 ).
Simplifying (47) - (58), the power system can be

written as a differential algebraic equation of the
form (2). The dynamic state variables are given by
xi = [E′

qi, E
′
di, δi, ωi, Efdi, Rfi, VRi, TMi, PSV i]

T

∀i = 1, 2, . . . ,m. The algebraic variables are
yi = [Idi, Iqi, Vi, θi]

T ∀i = 1, 2, . . . ,m and yj = [Vj , θj ]
T

∀j = m+1, . . . , n. To solve the differential model, we apply a
trapezoidal discretization rule. For a m machine, n bus system
the number of states that need to be solved is 11m+ 2n.

VI. CASE STUDIES

A case study was performed on the Western Electricity
Coordinating Council’s (WECC) 3 machine, 9 bus test system
shown in Fig. 3 [20]. At t = 0.04 sec a fault is created by
severing the transmission lines that connect buses {4, 5} and
{8, 9}. The fault is cleared after 0.15 sec and the the transient
response is computed with the traditional sequential approach
and in parallel. The simulation has a duration of 10 sec and
uses a step size of h = 0.01 sec for the numerical integration.
The simulations are currently implemented in MATLAB and
the number of iterations required for the global residual to
converge less than 10−10 for each solution is recorded. The
number of iterations is used as the metric to compare results
between the two methods since the computational time cannot
realistically determined until the systems are tested in a parallel
environment.

Gen 1

G
e
n
2

G
e
n
3

1

2 3

4

5 6

7 8 9

Load 1 Load 2

Load 3

Fig. 3: WECC 3 Machine 9 Bus Network

Figures 4(a) and 4(b) are the frequency responses of the
system using the sequential and parallel methods, respectively.
In addition to the frequency response, the same results were
achieved for the remaining 50 states.

Figure 5(a) shows the local residuals of the first 80 iterations
for the sequential method. On average, it was observed that it
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Fig. 4: Network Frequency Response

took approximately 4 iterations to solve the set of nonlinear
equations at each time step. Notice that there are two prominent
spikes at iterations 4 and 66. The first corresponds to the fault
and the second is when the fault is cleared. Intuitively, the
additional iterations are explained by the change in network
structure and the initial conditions at time steps 4 and 19.

The global residuals are compared in Fig. 5(b). The se-
quential method required 4142 iterations to converge whereas
the parallel method converged within the desired tolerances
after 1017 iterations for the 1000 time step simulation which
is close to the theoretical lower bound. The parallel method
resulted in a 75% savings in the number of iterations over the
sequential method. Additionally, we observed that as the length
of the horizon is increased, the average number of iterations of
the parallel method asymptotically converges to the theoretical
lower bound.
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Fig. 5: Residuals

VII. CONCLUSIONS AND FUTURE WORK

We provide a convergence analysis that explains why parallel
block Newton methods can significantly reduce the number
of iterations compared to sequential methods. In addition, we
provide a theoretical lower bound on the number of iterations
needed by the method. Numerical tests indicate that the method
is scalable.

Future work will take advantage of the linear algebra struc-
ture of the problem to develop a multi-level parallelization
scheme to reduce the time of each parallel Newton iteration.
This will also enable us to group multiple time steps in a

single Newton system and thus achieve convergence properties
that are closer to full-space Newton methods. Additionally,
strategies with adaptive time steps will be implemented. Finally,
an important research direction is the convergence of more
general multi-splitting (e.g., parallel in space) methods.
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